錯視が生起する周波数帯の4ストローク運動錯視を用いたUI へのIT-CCAを活用したSSVEPベースBCIの利用検討

振原 知希^{1,a)} 宮下 芳明^{1,b)}

概要:4ストローク運動錯視は,輝度を変化させた静止画の連続によって,一方向に無限に移動しているように知覚させる運動錯視である. 我々の研究により,8.57–15.0 Hz でフレームが更新される4ストローク運動錯視を注視した際にSSVEP が誘発されることが明らかとなり,SSVEP ベース BCI に対する4ストローク運動錯視を用いた UI の有用性が示された. 一方で,明滅が速すぎて錯視が生起されないという意見が得られたため,周波数帯を見直す必要がある. そこで,錯視が生起性が保証された上で改めて UI の有用性を示すことを目的とし,周波数を4.29–7.50 Hz に半減させたフリッカ刺激を用いて実験を行った. その結果,識別手法として IT-CCA を導入することで,錯視が生起がしやすい周波数帯においても識別精度が低下せず,既存のフリッカ刺激に匹敵する高い精度を示した. さらにアンケートの結果から,周波数を下げることで錯視が起こりやすくなる傾向が見られた. また,4ストローク運動錯視を注視する際,SSVEP と SSMVEP を同時に誘発している可能性が示唆されたが,IT-CCA は2種の VEP の干渉による影響を受けなかった. そのため,IT-CCA を識別手法として用いることで,4ストローク運動錯視を用いた UI に対し,高い操作性と錯視の生起の両立を可能にすることが期待される.

1. はじめに

Brain-Computer Interface (BCI) は、脳波など脳から取 得される情報を利用して,感情の可視化や文字入力, UI 操 作といったコンピュータ操作を可能にする. BCIを用いた インタフェースとして、一定周期で明滅を繰り返すフリッ カ刺激への注視をトリガーとして UI 要素を操作するもの が存在する. これは、定常状態視覚誘発電位 (Steady-State Visual Evoked Potential:SSVEP)と呼ばれる, 注視する フリッカ刺激の周波数に等しい周波数成分の振幅増強が, 視覚野の脳波で観測される現象を利用している. SSVEP をベースとした BCI は,高い識別精度や短時間のキャリブ レーションを実現したことから, BCI を介して GUI の操 作を行う際の、最も一般的かつ効率的な手法として用いら れる.しかし, 既存の UI で用いられるフリッカ刺激は選 択の度に目の疲れが蓄積され,なおかつ単調な刺激である がゆえに、繰り返し注視していると徐々に注意散漫になっ てしまうのではないかと考えた.

そこで我々は, UI に用いられるフリッカ刺激の単調な デザインを改良するために4ストローク運動錯視に着目 した.4ストローク運動錯視とは,少数の静止画の繰り返

しであるにも関わらず、刺激が一方向へ動き続けているよ うに知覚される運動錯視である. 4 ストローク運動錯視は 輝度反転を繰り返すため、フリッカ刺激として扱うことで き、加えて錯視を注視の対象とすることで注意散漫になら ないと予想される. このことから、4 ストローク運動錯視 を UI 要素に用いることで BCI 向けの UI としての機能性 が保証されつつデザインの質が向上すると考えた.そして 4 ストローク運動錯視を用いた UI が実際に SSVEP ベース の BCI に対して有用か検証を行った [1]. その際, SSVEP 振幅の増強効果は10,15 Hz 付近でピークになると言われ ているため [2], [3], 刺激周波数は 8.57, 10.0, 12.0, 15.0 Hzの4条件を用いた.検証の結果,4ストローク運動錯視 を用いた際も高い識別精度が得られ, UI としての機能性 が保証されることが示された. さらに実験後のアンケート にて,「単なる点滅よりも動きがあって集中して見ること ができた」、「運動錯視を注視する際に矢印全体を捉えよう としたため、注視する位置がなんとなく定まった」といっ た意見が得られ、錯視の生起によって注意が保たれること が示唆された.よって、4ストローク運動錯視の有用性が 示されたが、12.0、15.0 Hz では速すぎて錯視が起こらな い参加者も見られた. この結果から, 錯視が起こる周波数 は SSVEP 振幅の増強効果がピークとなる周波数より小さ いと考えられるが (図 1), 複数の UI 要素を配置し, それ

¹ 明治大学

^{a)} cs222033@meiji.ac.jp

^{b)} homei@homei.com

図 1 周波数に対する SSVEP 振幅の増強幅のイメージ図. 10−15 Hz で最大の振幅が観測される [2], [3]. 橙色に示した範囲は, 錯視が生起しやすいと予想される周波数帯であり, SSVEP の 振幅増強がピークとなる周波数は錯視が生起する周波数帯よ りも大きい. そのため複数の UI 要素を配置し,それぞれ錯視 が起こるように周波数を設定すると,ピークに満たない周波数 を用いる必要がある.

ぞれ錯視が起こるように周波数を設定すると,ピークに満 たない周波数を用いる必要がある.

本研究の目的は, 錯視の生起性が保証された上で, SSVEP ベース BCI 向けの UI に対する 4 ストローク運動錯視の有 用性を改めて示すことである.実験では,以前に用いた刺 激の半分のフリッカ周波数(4.29, 5.00, 6.00, 7.50 Hz) を持つ 4 ストローク運動錯視を用い,SSVEP の識別精度 が保たれ,かつ錯視が生起されるか調査した.実験の結 果,錯視が起こりやすくなる傾向が見られたが,正準相 関分析(CCA)による識別では 10 %程の精度低下が見ら れた.これを解消すべく Individual template-based CCA (IT-CCA)を導入したところ,識別精度が低下せず,既存 のフリッカ刺激と比較しても差が見られないことが明らか となった.したがって錯視が生起しやすい周波数帯を用い ても UI としての機能性が保証されることが示された.

また,追加実験により,4ストローク運動錯視を注視した 際,SSVEPだけでなく,定常状態運動視覚誘発電位(Steady-State Motion Visual Evoked Potential : SSMVEP)と呼 ばれる VEP が同時に増強されたことが示唆された. CCA は干渉の影響を受け識別精度の低下が見られたものの, IT-CCA では精度の低下は見られなかった. これら2つの 実験結果を踏まえ,4ストローク運動錯視をフリッカ刺激 として用いる場合,2種の VEP の鑑賞による影響を受け ない IT-CCA を識別方法に用いることが有用であると結論 づけた.

2. 関連研究

本章では最初に,今回の研究で用いる4ストローク運動 錯視の発生メカニズムについて2.1節で詳しく説明し,2.2 節では SSVEP に関する知識を提供する.本研究では主に フリッカ刺激に焦点を当てているが,同様にフリッカ刺激 に焦点を当てた研究は既に存在しており,それについては 2.3節で紹介する.さらに,2.4節では SSMVEP について

図2 4 ストローク運動錯視を引き起こすフレーム遷移の様子([7] より引用).ファイ現象とリバースファイを交互に知覚させる ことで、4 ストローク運動錯視が生起される.

詳しく説明し,4ストローク運動錯視との関連性について 論じる.最後に,本研究で使用したSSVEPの識別手法に ついて,2.5節で詳細に説明する.

2.1 4ストローク運動錯視のメカニズム

静止画の連続によって引き起こされる仮想の運動を知覚 する現象をファイ現象といい,これはWetheimer によって 発見された [4].また,Anstis は,輝度が反転した上でわず かにずれた2つの画像を連続して提示した際,知覚される 運動が画像のずれとは反対方向になることを報告した [5]. この知覚現象は,ファイ現象と逆の効果があり,リバース ファイと呼ばれている.

Anstis らは、2枚の連続する画像と、それらの輝度を反 転させた2枚の画像を用いて、ファイ現象とリバースファ イを交互に知覚させる4ストローク運動錯視の存在を示し た[6].4ストローク運動錯視は、図2のような4コマの静 止画を繰り返すことによって一方向に無限に移動している ように知覚させる運動錯視である.北岡は、4ストローク 運動錯視を用いて直線運動や回転運動、膨張・縮小などの 動きを知覚させる作例を数多く示している[7].

2.2 SSVEP の特性

定常状態視覚誘発電位 (Steady-State Visual Evoked Potentials: SSVEP) は,視覚刺激の提示によって誘発される 視覚誘発電位 (Visual Evoked Potential : VEP) の一つで あり,特定の周波数で明滅する視覚刺激 (フリッカ刺激) によって誘発される自然な周期的反応である [8], [9]. 視 覚情報を識別する際は P300 事象関連電位や SSVEP を用 いることが多いが,最近では特に SSVEP が注目されてい る [10].

SSVEP は、1–90 Hz の周波数を持つフリッカ刺激によっ て誘発される [2]、[3]. 誘発される SSVEP の振幅は、刺激 の周波数に等しい周波数成分で最大となり、高調波成分で も増幅が見られる [2]. 実験で用いられる刺激周波数は主

図3 フリッカ刺激の各周期において交互に提示される視覚刺激([11] Figure 3 より引用). (a)単一グラフィック刺激.単一のオブ ジェクトが表示・非表示を繰り返す. (b) パターン反転刺激. 一定のパターンで配置された 2 色の色が交互に入れ替わる.

に, 1–12 Hz の低周波数帯, 12-30 Hz の中周波数帯, 30–60 Hz の高周波数帯の 3 つの周波数帯に区分されている [11]. 多くの BCI 研究では,より大きな反応を得やすい低周波数 帯と中周波数帯を使用しているが, 10, 15 Hz 付近で振幅 が最大となるため [2], [3], 10–15 Hz 付近が刺激周波数と して用いられる事が多い.

さらに,異なる周波数のフリッカ刺激を同時に注視した際,どのように SSVEP が誘発されるかも調査されている. Andersen らは,複数の異なる周波数のフリッカ刺激を重 ね合わせて提示した場合,各周波数に対応する SSVEP 振 幅が増幅することを示した [12], [13].また,その中でも注 視していた周波数に対応する SSVEP 振幅が最も増幅され ることが示されている.

2.3 SSVEP を誘発するフリッカ刺激

SSVEPの研究で用いられるフリッカ刺激は,光刺激,単 ーグラフィック刺激,パターン反転刺激の三つに大きく分 けられる [11]. 光刺激は LED, 蛍光灯などの光源を用いて, 指定された周波数で変調されたものであり,あらゆる波形 を正確に表現できるという利点がある.他2種の刺激はコ ンピュータの画面上に表示される.単一グラフィック刺激 (図 3a)は,正方形や矢印などのグラフィックを明滅させ て表示させるものであり,光刺激をコンピュータ画面上で 模倣している.パターン反転刺激(図 3b)は,チェッカー ボードなどのグラフィカルなパターンを反転させ,交互に 表示するものであり,通常は白と黒で色分けされている.

パターン反転刺激は輝度が反転しても刺激の平均輝度 が変化せず、コントラストのみが変化する.そのため,パ ターン反転刺激を構成する2つの空間的変化は,同じ種類 と数の神経細胞の反応を同様に引き起こす[14],[15],[16]. つまり刺激の一方の段階と他方の段階に反応する神経細 胞が同じであるため,各反転への反応も同じになる.した がって,光刺激と単一グラフィック刺激は1サイクルの明 滅,すなわち2回の交替でSSVEP振幅の増幅を引き起こ すのに対し,パターン反転刺激は1回の交替でSSVEP振 幅の増幅を引き起こす. また,SSVEP の振幅増強効果は,フリッカ刺激を中心 視野に配置し,大きく見せることで高まることが判明して いる.Garcia らは視覚に含まれる黒背景と,明滅する白色 画素の比率を変化させ,SSVEP 振幅の増幅との関係性を 調査した [17].調査の結果,白色画素の比率が大きくなる につれて SSVEP 振幅が大きく増強したことを報告してい る.また,中心視野に刺激を配置することで,周辺視野に 比べてより増幅した SSVEP 振幅が得られることを示した.

フリッカ刺激を注視した際の疲労を軽減するため,刺激 のデザインの改良を試みた事例もある. Siribunyapha ら は QR コード型のフリッカ刺激を提案し,明滅の強さを軽 減した [18].また,フリッカの色によって疲労を軽減する ことを目的とし,基礎研究として色ごとの SSVEP 振幅増 強の影響を調査した研究がある [19], [20].その結果,色に よって SSVEP の振幅増強に差があることを示し,白色刺 激がいずれの周波数帯でも高い精度を示したことが報告さ れている.これらの研究事例は新たなフリッカ刺激を提案 するという点で本研究と一致している.

2.4 反復動作の注視によって誘発される VEP

フリッカ刺激によって誘発される VEP 以外にも,反復動 作の注視によって誘発される VEP (Motion-based Visual Evoked Potentials: mVEP) が存在する.フリッカ刺激を 用いる手法に比べ,疲れ目などの影響が少ないため,定 常的な mVEP である Steady-State Motion Visual Evoked Potentials (SSMVEP) は SSVEP ベースの BCI の分野に おける新たなトレンドになっている [21]. Stawicki らは, SSMVEP に関する研究で提案されてきた視覚刺激をまと め,パフォーマンスに関して SSVEP との比較実験を行っ た [21]. フリッカ刺激と比較を行った運動刺激は,図4に 示した (b) から (f) の5種類である.

- (b) 白い円が上下を行き来する動作.
- (c) コインが水平回転するような動作.
- (d) 市松模様が放射状に収縮と膨張を繰り返す動作.
- (e) 円や市松模様の隣り合う円弧が外向きと内向きで交 互に動く動作.
- (f) 円弧の回転動作.

実験の結果,(b)の上下運動のみ,パフォーマンスに関 して SSVEP と同等であったが,検証したどの刺激も,主 観的に従来のフリッカー刺激よりも快適であることは確認 できなかったと報告している.

4ストローク運動錯視は反復動作を併せ持つ明滅刺激の ため、SSVEP だけでなく SSMVEP も誘発されると考えら れる.よって、4ストローク運動錯視をフリッカ刺激とし て用いることで、SSVEP で用いられる刺激と SSMVEP で

図 4 Stawicki らによるパフォーマンスの比較実験で用いられた刺激の一覧([21] Figure 2 より引用).

用いられる刺激の双方の利点を活かすことが期待できる.

2.5 SSVEP の識別手法

2.5.1 正準相関分析 (CCA)

Lin らは、多チャンネルの脳波データにおける SSVEP を 検出するために正準相関分析(Canonical correlation analysis: CCA)を導入した [22]. CCA は 2 つのデータセット 間の基礎的な相関を見つけるために用いられる多変数統計 的手法である.

Y と X をそれぞれ、多チャンネルの脳波信号と参照信号 を表す 2 つの多次元変数とする. CCA では、2 つの正準変 量 Y と X の相関が最大となるような線形結合 $y = Y^T W_y$, $x = X^T W_x$ を求める. ここで、重みベクトル W_y と W_x は、以下の最適化問題(式 1)を解くことにより求めるこ とができる.

$$\max_{W_y, W_x} \rho(y, x) = \frac{\mathbf{E}[y^{\mathrm{T}}x]}{\mathbf{E}[y^{\mathrm{T}}y]\mathbf{E}[x^{\mathrm{T}}x]} = \frac{\mathbf{E}[W_y^{\mathrm{T}}YX^{\mathrm{T}}W_x]}{\mathbf{E}[W_y^{\mathrm{T}}YY^{\mathrm{T}}W_y]\mathbf{E}[W_x^{\mathrm{T}}XX^{\mathrm{T}}W_x]} \tag{1}$$

 W_y および W_x における ρ の最大値は最大正準相関であり, W_y および W_x への射影は正準変量である.SSVEP にお ける CCA では, C 個のチャンネルの脳波信号 $Y \in \mathbf{R}^{C \times P}$ (C チャンネル × P プロット)と m 番目の刺激周波数の 信号 $X_m \in \mathbf{R}^{2H \times P}$ (式 2) が,それぞれ式 1 の Y と X に 代入され,すべての刺激周波数について正準相関係数 ρ_m が求められる.

 図 5 訓練データが不要の識別手法における,SSVEPの検出過程を 表す図([23] Figure 1 より引用).

$$X_m = \begin{pmatrix} \sin(2\pi f_m t) \\ \cos(2\pi f_m t) \\ \vdots \\ \sin(2\pi H f_m t) \\ \cos(2\pi H f_m t) \end{pmatrix}, \quad t = \frac{1}{F}, \frac{2}{F}, \cdots, \frac{P}{F} \quad (2)$$

ここで, H は高調波の数, F はサンプリングレートを示 す. 最終的に出力される周波数 \hat{f} は, 以下の式によって求 められる.

$$\hat{f} = \arg\max_{f_m} \rho_m, \quad m = 1, 2, \cdots, M$$
 (3)

CCA は訓練データが不要な識別手法の1つである. 訓練 データが不要な識別手法は、いずれも SSVEP の検出を図5 に示された過程で行う. 1回の試行における多チャンネル の脳波信号と、各刺激周波数の正弦・余弦参照信号を入力 することで、ターゲットごとの特徴量 $\Psi(Y, X_f)$ が抽出さ れる [23]. なお、CCA では最大正準相関が特徴量 Ψ にあ たる.

2.5.2 IT-CCA

Individual template-based CCA(IT-CCA)は、Bin ら によって開発された CCA 法である [24].参照信号として、 CCA では各刺激周波数の正弦・余弦参照信号を用いたの に対し、IT-CCA では各個人で複数試行分の脳波データを 平均化したテンプレートを参照信号として用いている.

$$\bar{\chi}_m = \begin{pmatrix} \text{Mean EEG data at channel 1} \\ \vdots \\ \text{Mean EEG data at channel } n \end{pmatrix}$$
(4)

訓練データを用いた CCA 法は複数存在するが,その中で も IT-CCA が高い精度を示したことが Nakanishi らによっ て報告されている [25].

3. 実験1

明滅の頻度が半減しても SSVEP による識別が可能か検 証するために,指定されたフリッカ刺激を注視するタスク を行った.実験デザインやタスク,実験手順は以前行った 実験 [1] を元に設定された.

3.1 機材と実験環境

実験では、脳波計(Epoc X[26])と、デスクトップPC(Intel Core i9-12900KF, GeForce RTX 3070 Ti, 32.00 GB RAM) を使用した. ディスプレイの解像度は 2560 × 1440 pixels (24.5 inches, 586.7 mm × 330.0 mm, 0.2292 mm/pixel) で、リフレッシュレートは 240 Hz, 応答速度は 0.03 ms で あった. 実験システムは Unity で実装し、ディスプレイに 垂直同期させ、240 fps、フルスクリーンで実行した.

環境音による脳波のノイズを避けるため,実験は防音環 境が整った部屋で,無音の状態で行った.参加者の疲れ目 を低減するために蛍光灯を点けていたが,太陽光は遮断さ れた状態を保っていた.

3.2 脳波の計測

電極装着部位は 10%法に従って, P_7 , P_8 , O_1 , $O_2 を 用$ いた. 脳波データは EPOC X によって 2048 Hz でサンプ リングされ, 256 Hz にダウンサンプリングされた後に, Bluetooth を介して PC に送信された. PC 側では, Emotiv Pro を用いてデータを受け取り, Lab Streaming Layer を 介して Unity に送信された.

3.3 刺激

フリッカ刺激の種類を独立変数(S)とし,以下の2種類のフリッカ刺激を用いた.なお,すべての刺激の大きさは 200 pixels で統一した.

- Normal:白黒に明滅する四角形のフリッカ刺激.
- Four-stroke:指し示した方向へ矢印が動いているように知覚される4ストローク運動錯視(図 6).

4ストローク運動錯視ではリバースファイが起こる際に 輝度が反転するため、リバースファイの周期を輝度が反転 する周期に合わせた.そのため運動錯視の画像の更新は、 *Normal*条件と比べ2倍の頻度で行われた.

本実験で用いたフリッカ刺激は,各フレームに対応する 連番画像を生成し,生成した連番画像から動画を作成する ことで実装した.連番画像の生成には Procesing を用い, 連番画像から動画を作成する際は FFmpeg を用いた.白黒 に明滅するフリッカ刺激は 120 fps,輝度変化による運動 錯視は 240 fps でエンコードされた.

3.4 タスク

タスクの概要図を図7と図8に示す.図7はNormal

図 6 実験で用いた 4 ストローク運動錯視 (S = "Four-stroke") のフレーム遷移の様子.赤い点線は矢印がわずかに移動してい ることを示している.4 サイクルでファイ現象とリバースファ イが交互に発生する.

図 7 実験1のタスクの概要図(*S* = "*Normal*"). 各位置でそれぞ れ提示される周波数や矢印の向きが固定されている.

図8 実験1のタスクの概要図(S = "Four-stroke"). 各位置に配置された刺激の輝度反転の頻度は Normal 条件と同様である.

条件,図8は*Four-stroke*条件での概要図を示している. 灰色の背景で,四方には異なる周波数のフリッカ刺激,中 央には注視するターゲットを指し示す矢印が表示された.

参加者には、任意のタイミングで Space キーを押下さ せた. Space キーが押下されると、中央の矢印が次のター ゲットを指し示し、参加者は指定されたターゲットを注視 するよう促された.フリッカ刺激は4秒後に開始され、6 秒間提示された.よって参加者は、試行ごとに1つのター ゲットを10秒間注視するよう求められた.参加者には必 要に応じて任意の試行間で休憩を取るよう指示し、体調不 良が起こった際は直ちに実験を中止する旨を伝えた.

4つのターゲットそれぞれに対して1試行ずつ,合計4 試行を行うまでを1セットとし,参加者は各ブロックごと に10セットを続けて行った.実験は3回に分けて行われ, 1回の実験では2ブロックが行われた.各回の実験終了後, 参加者は簡単なアンケートフォームに回答を行った.

3.5 実験デザインと手順

各フリッカ刺激の周波数の組み合わせ (F_{group}) は Slow と Fast の 2 条件であった. Slow 条件で用いた周波数 f は, f = 4.29, 5.00, 6.00, 7.50 Hz, Fast 条件で用いた f は, f = 8.57, 10.0, 12.0, 15.0 Hz であった. なお, f の 値は 240 Hz で画面を更新する際,前者では 28, 24, 20, 16 フレームごと,後者では 14, 12, 10, 8 フレームごとに, それぞれ輝度反転が起こるよう設計されている.

フリッカ刺激の種類(S)は3.3節の2種類であり,そ れぞれを"Normal","Four-stroke"とした.Sの設定は 1回目と2回目で異なるようにした.また各回では疲れ目 の影響を考慮し,1ブロック目はSlow条件,2ブロック目 はFast条件で実験を行った.fの提示順序はセットごと にランダムで決定した.

1回目の実験では、まず参加者に対し全体の実験概要の 説明を行った.その後の手順は3回とも同様であった.ま ず参加者はBCIを装着し、電極の接触状態の調整を行っ た.その後、タスクを2ブロック行い、各ブロックで参加 者は練習用タスクを2セット行い、続けて本番を10セット 行った.全ての実験の終了後、参加者は簡単なアンケート に回答した.一人当たり合計で4ブロックを行ったため、 全試行は1,120試行(=4試行×10セット×4ブロック ×7名)であった.

3.6 参加者

参加者7名(平均22.6歳, *SD* = 1.40)を対象に行われた.参加者の内,裸眼の人は5名,眼鏡を着用していた人は2名であった.参加者には予め,疲れ目の発生などのリスクを伝えており,合意を得た上で実験を行った.

4. 結果

5つの時間窓長 (T = 1, 2, 3, 4, 5 s) に対し, Y を全チャ ンネルから得られたデータ, X_m を m 番目の刺激周波数 に対する参照信号として, CCA と IT-CCA で分析を行っ た. それぞれの方法で各試行ごとに \hat{f} を算出し, \hat{f} の値が ターゲット周波数に等しければ, その試行を成功とした. なお, 識別精度は $Acc = \frac{N_c}{N} \times 100$ [%] で求められた. N_c は識別に成功した試行回数, N は全試行回数を示す.

CCA では, m 番目の刺激周波数に対応する第2高調波 までの正弦波を参照信号とした. IT-CCA では参加者ごと に,各電極の m 番目の刺激を注視した試行における平均 の脳波データを算出し,それらを参照データとした.

全 1,120 試行のデータを用いて三元配置反復測定分散 分析を行った. なお,分散分析は IBM SPSS を用いて行

図 9 Slow 条件に対する CCA の平均識別精度の参加者内比較.

図 10 Fast 条件に対する CCA の平均識別精度の参加者内比較.

い,多重比較には Bonfferoni 法を用いた.独立変数はS, F_{group} ,Tの3つで,従属変数は Accuracy であった.グ ラフ中のエラーバーは標準偏差を示している.

4.1 CCA による識別

参加者内の平均識別精度を図9と図10に示す.なお, 図9はSlow条件,図10はFast条件に対する識別精度 を示す.刺激の種類によらず,CCAを用いた識別手法の 精度は時間窓長を大きくすることで向上する傾向が見られ た.またSの2条件を比較すると,ほとんど差が見られず Normal条件の方がやや高い結果になった.図9と図10 を比較すると,Slow条件の精度は,Fast条件に比べ,10 %ほど低下していることが読み取れる.

分散分析の結果, T で主効果が見られた ($F_{4,24}$ = 58.44, p < .001). 一方, F_{group} ($F_{1,6} = 2.224$, p = .186) と S ($F_{1,6} = 1.153$, p = .324) では主効果が見られなかった. また, いずれの交互作用も見られなかった.

表 1,表 2は、参加者間で識別精度を比較したものであ る.表中の太字で書かれた数字は、参加者ごとの最も高い 精度の値を示している.*Slow*条件において、7名中4名 の参加者は*Normal*条件で最大値を示し、残りの3名は

表1 Slow 条件における識別精度の参加者間比較.

参加者	Normal			Four-stroke		
	3 sec	$4 \sec$	5 sec	3 sec	4 sec	5 sec
1	50.0	60.0	72.5	67.5	62.5	80.0
2	52.5	50.0	60.0	30.0	37.5	35.0
3	50.0	52.5	57.5	55.0	65.0	65.0
4	40.0	45.0	47.5	32.5	37.5	35.0
5	90.0	97.5	97.5	70.0	80.0	87.5
6	55.0	60.0	70.0	62.5	65.6	71.9
7	72.5	75.0	82.5	60.0	67.5	62.5

表 2 *Fast* 条件における識別精度の参加者間比較.

参加者	Normal			Four-stroke					
	3 sec	4 sec	5 sec	3 sec	4 sec	5 sec			
1	92.5	100	97.5	60.0	67.5	80.0			
2	65.0	65.0	82.5	65.0	80.0	82.5			
3	57.5	67.5	77.5	30.0	32.5	37.5			
4	30.0	35.0	35.0	47.5	60.0	52.5			
5	82.5	87.5	87.5	62.5	62.5	70.0			
6	40.0	47.5	60.0	72.5	87.5	97.5			
7	82.5	82.5	92.5	77.5	75.0	75.0			

図 11 Slow 条件に対する IT-CCA の平均識別精度の参加者内比較.

Four-stroke 条件で最大値を示した.一方, Fast 条件に おいて,7名中4名の参加者は Normal 条件で最大値を示 し,2名の参加者は Four-stroke 条件で最大値を示した. また,1名の参加者は両条件で同じ最大値を示した.さら に, F_{group} で比較すると,7名中6名の参加者が,Fast 条 件において,より高い精度を示していたことが読み取れる.

4.2 IT-CCA による識別

参加者内の平均識別精度を図 11 と図 12 に示す. なお, 図 11 は *Slow* 条件,図 12 は *Fast* 条件に対する識別精度 を示す.図 9,図 10 と比較すると、CCA とは異なり、短 い時間窓長でも高い精度を示す傾向が見られた.また各条 件での差は見られなかった.図 11 と図 12 を比較しても、 *Slow* 条件と *Fast* 条件で精度にほぼ差が見られなかった. 分散分析を行ったところ、すべての独立変数に対して主効 果は見られず、いずれの交互作用も見られなかった.

Time window length (s)

図12 Fast 条件に対する IT-CCA の平均識別精度の参加者内比較.

図 13 「すべての刺激に対して錯視が起こったか」という質問に対 する回答の割合. Slow 条件では「すべての刺激に対し錯視 が起こった」と回答した人の割合が Fast 条件に比べて高い 結果となった.

4.3 アンケート結果

Four-stroke 条件のタスクにおいて, すべての刺激で錯 視が起こったかアンケートを取った. その結果を図 13 に 示す. Fast 条件では 7 名のうち 4 名が, 速すぎて動きが 見えないものがあったと回答し, 特に 15.0, 12.0 Hz の刺 激に対して錯視が生起されない結果となった. 一方, Slow 条件では 7 名のうち 6 名が, すべてのターゲットで錯視が 起こっていたと回答し, 残りの 1 名は, 7.50 Hz の刺激で 錯視が起こらなかったと回答した.

5. 考察と議論(1)

CCA の結果から,以前の研究 [1] で示した通り,4スト ローク運動錯視を用いることで普通のフリッカ刺激と比べ て精度が低下する傾向が見られた.しかし今回の実験では S に主効果が見られなかったため,4ストローク運動錯視 をフリッカ刺激として用いた際に SSVEP 振幅の増強効果 はあまり損なわれなかったと考えられる.したがって,4 ストローク運動錯視に対する BCI 向け UI としての有用性 が改めて示されたと言えよう.

また,IT-CCA を識別方法に用いることで,刺激の種類 や周波数によらず高い識別精度を示すことが明らかとなっ た.これはターゲットを注視する度に,同じような特徴を 持つ VEP が誘発されたために,平均化した参照データと の相関が高くなったと考えられる.加えて,アンケートの 結果から,フリッカ周波数を下げることで錯視が起こりや すくなることが判明した. IT-CCA の結果も踏まえると, フリッカ刺激の周波数を低下させ錯視が生起しやすいよう にしても, IT-CCA を用いれば, 注視するターゲットの識 別が既存のフリッカ刺激と同程度に可能であると考察で きる.

Fast 条件において IT-CCA の精度が非常に高い結果と なったが,同じ実験条件を用いた以前の実験 [1] で得られた データセットに対し, IT-CCA で識別を試みたところ,精 度が極めて低い結果となった.以前用いた脳波計のサンプ リング周波数が 128 Hz だったのに対し,本実験は 256 Hz と倍になったことで脳波がより詳細にサンプリングされ, IT-CCA の精度が向上したと思われる.したがって,参照 データに脳波データを用いる手法において,脳波計のサン プリングレートの高さが非常に重要であると考えている.

参加者内比較の結果から、CCA では Four-stroke 条件 の精度が Normal 条件の精度をわずかに下回る傾向が見ら れたが、IT-CCA ではその傾向は見られていない. この要 因として、4 ストローク運動錯視を注視した際に、明滅と は異なる刺激によって SSVEP とは異なる VEP が誘発さ れ、干渉したのではないかと考えた. 4 ストローク運動錯 視はファイ現象とリバースファイを繰り返しているため、 明滅と画像の反復動作を同時に提示する刺激と捉えること ができる. そのため、錯視を知覚したと同時に反復動作に 注意が向けられたことで、SSMVEP が誘発されたのでは ないかと考えた. そこで、実験1で用いた4 ストローク運 動錯視において、矢印の反復運動が識別精度に影響を及ぼ していたかを調査するため追加で実験を行った.

6. 実験2

4ストローク運動錯視における SSMVEP の誘発性の検 証を行うための実験を行った.機材や実験環境,タスクの 内容は実験1と同様であった.脳波の観測方法も同様で, 実験1と同じ部位に電極を配置して実験を行った.また, この実験は実験1の参加者全員を対象に行われた.

6.1 刺激

実験1で用いた4ストローク運動錯視は,背景が白色 で矢印が黒色の状態と,背景が黒色で矢印が白色の状態 が存在する.そのため,矢印と背景の色の組み合わせが SSMVEP 振幅の識別精度に影響を及ぼす可能性を考慮し, 2種類の刺激を用いた(図14).なお,すべての刺激の大 きさは実験1と同様に200 pixelsで統一した.

6.2 実験デザインと手順

各刺激の振動数 f は固定されており,それぞれが 実験 1 (図 8) に対応する位置に配置された (f = 8.57,10.0,12.0,15.0 Hz). 視覚刺激は 6.1 節で示した 2 種 類を用いた.以降,白色背景に対し黒色の矢印が振動する

図 14 実験2で用いられた2種類の矢印の反復運動.赤い点線は矢 印がわずかに移動していることを示している.(a)矢印が黒 色で背景が白色.(b)矢印が白色で背景が黒色.

 図 15 参加者内における CCA と IT-CCA の平均識別精度の 比較.(左) Black-arrow 条件での識別精度の比較.(右) White-arrow 条件での識別精度の比較.

刺激(図 14a)を用いた条件を "*Black-arrow*"条件, 黒色 背景に対し白色の矢印が振動する刺激(図 14b)を用いた 条件を "*White-arrow*"条件と呼ぶ. *f* の提示順序はセット ごとにランダムで決定した.

参加者に対し実験概要の説明を行った後,まず参加者 は BCI を装着し,電極の接触状態の調整を行った.その 後,タスクを2ブロック行った.なお,1ブロック目は *Black-arrow*条件,2ブロック目は*White-arrow*条件で タスクが行われた.各ブロックで参加者は練習用タスクを 2セット行い,続けて本番を10セット行った.実験終了 後,参加者は簡単なアンケートに回答した.一人当たり合 計で2ブロックを行ったため,全試行は560試行(=4試 行×10セット×2ブロック×7名)であった.

6.3 結果

実験1と同様に、5つの時間窓長(T = 1, 2, 3, 4, 5 s)に 対し、Yを全チャンネルから得られたデータ、 X_m をm番 目の刺激周波数に対する参照信号として、CCAとIT-CCA で分析を行った.参加者内の平均識別精度を図15に示す. グラフ中のエラーバーは標準偏差を示している.

両条件において, CCA に比べ, IT-CCA の精度が大き く上回る結果となった. CCA では最大でも 40 %程度の精 度しか得られなかったが, IT-CCA では最大で 90 %の精 度を達成している.

7. 考察と議論(2)

7.1 実験2に対する議論

IT-CCA の精度が最大で 70 %を上回っていたことから, 矢印の振動を注視したことによって SSMVEP 振幅が増強 されたと推測できる.しかし,振動の注視によって誘発さ れた VEP は,4種の振動数に対応した正弦波との相関がい ずれも低かったため,CCA の精度が 25 %付近に収束した と考えている.以上より,振動を注視したことで,各振動 数に一対一で対応する VEP が誘発されたが,振動数に等 しい周波数成分の振幅増強は起こらなかったと考察する.

7.2 2つの実験を踏まえた議論

実験1では、Four-stroke 条件における CCA での識別 精度が Normal 条件と比べわずかに劣る結果となった. こ の結果を実験2の結果を踏まえて改めて考察すると、4ス トローク運動錯視を注視する際、明滅と同時に矢印の振動 が視界に入り、そこで増強した SSMVEP が干渉したこと で CCA の精度が低下したと考えられる. しかし、IT-CCA による識別ではそのような傾向は見られず、S の条件によ らずに高い精度を示していた. 実験2で、振動する刺激 に対しても IT-CCA が高精度で識別できていたことから、 Four-stroke 条件において、IT-CCA による識別精度は、 SSMVEP の干渉に影響されなかったと推測できる. その ため、S の条件によらずに高い精度を示したと考えられる.

また実験1において, IT-CCA による識別精度に対して F_{group} の条件による差も見られなかったことから,4スト ローク運動錯視をフリッカ刺激として用いる場合,2種の VEP の鑑賞による影響を受けない IT-CCA を識別方法に 用いることで,錯視の生起が起こりやすい条件でも既存の フリッカ刺激に匹敵する高い識別精度を達成できると考え られる. CCA では $S \approx F_{group}$ による精度の低下が見られ たため, CCA よりも IT-CCA が,4ストローク運動錯視 の識別に適しているだろう.

7.3 4 ストローク運動錯視の UI への応用

4ストローク運動錯視を UI に導入することで,言語に よらない,UI 操作の誘導が可能になると考えている.エレ ベータの開閉ボタンのように,矢印などを組み合わせた静 止画デザインを見ただけでは意味が伝わりにくい事例が存 在する [27].このように,静止画では十分な情報を伝達で きないデザインに対し,錯視によって動きの情報を付加す れば,文字を使わずとも UI の機能を説明できるようにな ると考えられる.デザインの面では輝度が反転する点が邪 魔に思われる可能性があるが,SSVEP の誘発という機能 をもたせることでその欠点を逆手に取りつつ,お互いの利 点が非常に噛み合った UI が設計できるだろう.

8. 制約と展望

本研究の制約として,フリッカ刺激を注視することで疲 れ目が生じてしまうことが挙げられる.実験後の感想とし て,「眠くなった」や「疲れが溜まった」という回答が多く 見られた.また,タスクの量が多いという回答も複数得ら れた.そのため、本実験で用いたフリッカは刺激が強すぎ ると考えている.疲れ目が生じやすいことが,UIとして用 いた際に体験の質が低下することに繋がってしまう.そこ で,フリッカの強さを低減し,長い時間注視しても疲れに くいよう工夫する必要がある.実際に4ストローク運動錯 視に対し,フリッカの低減を試みる研究も存在し,Kawabe らは部分的に輝度を反転させることで,錯視を生起させつ つフリッカの低減を行っている[28].このような手法を用 いて,疲れ目の低減を試みたいと考えている.

また,今回の実験では白黒の2色で構成される運動錯視 を用いたが,2値化された画像では細かい描画ができない ため,使えるデザインが基本図形を組み合わせたものに制 限されてしまう.グレースケール画像を用いて作成した輝 度変化による運動錯視が SSVEP 振幅を増強することがで きれば,細かい表現ができ,より UI デザインの質を高め ることができると考える.そこで,グレースケールを用い た際に SSVEP 振幅が増強されるかを調査したいと考えて いる.本来,SSVEP は光の明滅によって誘発されるもの なので,グレースケールの色の差を光の強さの差と同様に 扱うことが可能かを同時に調査していきたい.

さらに、Anderson らの研究 [12], [13] によって、同時に 複数の刺激を見た際に、最も注視していた刺激に対応する 周波数成分の振幅増強が起こると報告されていたが、4ス トローク運動錯視を注視する際にも、どこを注視するかに よって増強される周波数成分が異なるのではないかと考 えた.今回の実験では、注視の仕方に対して教示を伝えな かったが、教示を増やし、明滅を注視させるバイアス、振 動を注視させるバイアス、その中間として錯視全体を注視 させるバイアスをかけて変化が生まれるかを調査したい.

9. まとめ

本研究では、SSVEP ベースの BCI 向け UI として用いら れる4ストローク運動錯視に対し、錯視が生起される周波 数帯において、SSVEP 振幅の識別精度が損なわれない方法 がないか調査した.その結果、輝度反転の頻度が10.0 Hz や15.0 Hz から5.00 Hz や7.50 Hz に半減しても IT-CCA による識別精度が低下せず、既存のフリッカ刺激と比較し ても有意な差が見られないことが明らかとなった.また、 輝度反転の頻度が半減したことで錯視が生起しやすくなる 結果となった.4ストローク運動錯視が生起される周波数 帯と UI として用いるのに適したフリッカ刺激の周波数帯 は異なると思われていたが、この結果から、実際は錯視が 生起される周波数帯でも増幅された SSVEP の識別精度は 損なわれないことが明らかとなった.

また、4ストローク運動錯視を注視した際、SSVEPと SSMVEPの2つのVEPが増強され、CCAでは2つの VEPの干渉による影響を受けてしまったことが示唆され た.しかし、IT-CCAを用いて識別を行うことで、VEPの 干渉による精度の低下は見られなかったことから、4スト ローク運動錯視をフリッカ刺激として用いる際にIT-CCA を識別手法として用いることで、既存のBCI用 UI に劣ら ない操作性を持ちつつ、より質の高い UI の設計が可能に なることが期待される.

参考文献

- 振原知希,宮下芳明:輝度変化による運動錯視を用いた SSVEP ベース BCI,研究報告ヒューマンコンピュータ インタラクション, Vol. 2023-HCI-201, No. 12, pp. 1-8 (2023).
- [2] Herrmann, C.: Human EEG responses to 1-100 Hz flicker: resonance phenomena in visual cortex and their potential correlation to cognitive phenomena, *Experimental Brain Research*, Vol. 137, pp. 346–353 (2001).
- [3] Pastor, M. A., Artieda, J., Arbizu, J., Valencia, M. and Masdeu, J. C.: Human Cerebral Activation during Steady-State Visual-Evoked Responses, *Journal of Neuroscience*, Vol. 23, No. 37, pp. 11621–11627 (2003).
- [4] Wertheimer, M.: Experimentelle Studien über das Sehen von Bewegung., Zeit Schrift Für Psychologie, Vol. 61, pp. 161–265 (1912).
- [5] Anstis, S.: Phi movement as a subtraction process, Vision research, Vol. 10, No. 12, pp. 1411–1430 (1970).
- [6] Anstis, S. M. and Rogers, B. J.: Illusory continuous motion from oscillating positive-negative patterns: Implications for motion perception, *Perception*, Vol. 15, No. 5, pp. 627–640 (1986).
- [7] 北岡明佳:輝度変化による運動錯視(リバースファイなど)の再検討, http://www.psy.ritsumei. ac.jp/~akitaoka/sakkakuWS2021.html. (Accessed on 11/05/2022).
- [8] Regan, D.: Some characteristics of average steadystate and transient responses evoked by modulated light, *Electroencephalography and Clinical Neurophysiology*, Vol. 20, No. 3, pp. 238–248 (1966).
- [9] Norcia, A. M., Appelbaum, L. G., Ales, J. M., Cottereau, B. R. and Rossion, B.: The steady-state visual evoked potential in vision research: A review, *Journal of Vision*, Vol. 15, No. 6, p. 4 (2015).
- [10] Nakanishi, M., Wang, Y., Chen, X., Wang, Y.-T., Gao, X. and Jung, T.-P.: Enhancing Detection of SSVEPs for a High-Speed Brain Speller Using Task-Related Component Analysis, *IEEE Transactions on Biomedical Engineering*, Vol. 65, No. 1, pp. 104–112 (2018).
- [11] Danhua Zhu, Jordi Bieger, G. G. M. R. M. A.: A Survey of Stimulation Methods Used in SSVEP-Based BCIs, *Computational Intelligence and Neuroscience*, Vol. 2010, pp. 1–12 (2010).
- [12] Andersen, S. K., Hillyard, S. A. and Müller, M. M.: Attention facilitates multiple stimulus features in parallel in human visual cortex, *Current biology : CB*, Vol. 18, No. 13, pp. 1006–1009 (2008).
- [13] Andersen, S. K. and Müller, M. M.: Behavioral perfor-

mance follows the time course of neural facilitation and suppression during cued shifts of feature-selective attention, *Proceedings of the National Academy of Sciences*, Vol. 107, No. 31, pp. 13878–13882 (2010).

- [14] Cobb, W. A., Morton, H. B. and Ettlinger, G.: Cerebral Potentials evoked by Pattern Reversal and their Suppression in Visual Rivalry, *Nature*, Vol. 216, No. 5120, pp. 1123–1125 (1967).
- [15] Millodot, M. and Riggs, L. A.: Refraction Determined Electrophysiologically: Responses to Alternation of Visual Contours, *Archives of Ophthalmology*, Vol. 84, No. 3, pp. 272–278 (1970).
- [16] Norcia, A. M., Appelbaum, L. G., Ales, J. M., Cottereau, B. R. and Rossion, B.: The steady-state visual evoked potential in vision research: A review, *Journal of Vision*, Vol. 15, No. 6, p. 4 (2015).
- [17] Garcia, D. E., Zheng, K. W., Liu, Y., Tao, Y. S. and Mann, S.: Painting with the Eye: Understanding The Visual Field of the Human Eye with SSVEP, 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3689–3694 (2020).
- [18] Siribunyaphat, N. and Punsawad, Y.: Steady-state visual evoked potential-based brain-computer interface using a novel visual stimulus with quick response (QR) code pattern, *Sensors (Basel)*, Vol. 22, No. 4, p. 1439 (2022).
- [19] Cao, T., Wan, F., Mak, P. U., Mak, P.-I., Vai, M. I. and Hu, Y.: Flashing color on the performance of SSVEP-based brain-computer interfaces, 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1819–1822 (online), DOI: 10.1109/EMBC.2012.6346304 (2012).
- [20] Duart, X., Quiles, E., Suay, F., Chio, N., García, E. and Morant, F.: Evaluating the Effect of Stimuli Color and Frequency on SSVEP, *Sensors*, Vol. 21, No. 1 (2021).
- [21] Stawicki, P. and Volosyak, I.: Comparison of Modern Highly Interactive Flicker-Free Steady State Motion Visual Evoked Potentials for Practical Brain–Computer Interfaces, *Brain Sciences*, Vol. 10, No. 10 (2020).
- [22] Lin, Z., Zhang, C., Wu, W. and Gao, X.: Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs, *IEEE Transactions on Biomedical Engineering*, Vol. 54, No. 6, pp. 1172–1176 (2007).
- [23] Zerafa, R., Camilleri, T., Falzon, O. and Camilleri, K. P.: To train or not to train? A survey on training of feature extraction methods for SSVEP-based BCIs, *Journal of Neural Engineering*, Vol. 15, No. 5, pp. 1–24 (2018).
- [24] Bin, G., Gao, X., Wang, Y., Li, Y., Hong, B. and Gao, S.: A high-speed BCI based on code modulation VEP, *Journal of Neural Engineering*, Vol. 8, No. 2, p. 025015 (online), DOI: 10.1088/1741-2560/8/2/025015 (2011).
- [25] Nakanishi, M., Wang, Y., Wang, Y.-T. and Jung, T.-P.: A Comparison Study of Canonical Correlation Analysis Based Methods for Detecting Steady-State Visual Evoked Potentials, *PLOS ONE*, Vol. 10, No. 10, pp. 1– 18 (2015).
- [26] Emotiv: EPOC X with 14 Channel Wireless EEG Headset — EMOTIV, https://www.emotiv.com/epoc-x/. (Accessed on 09/18/2023).
- [27] 延 明欽,原田 昭: エレベータ「開閉」サインに関する 識別容易性の評価,デザイン学研究, Vol. 50, No. 2, pp. 63-72 (2003).
- [28] Kawabe, T. and Nishida, S.: Reduction of Flicker in Four-Stroke Motion of Color Images, *i-Perception*, Vol. 9, No. 1 (2018).