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Previous studies on the Finger-Fitts law (FFitts law) are lacking in sufficient experiments to verify its inherent
potential. Since the FFitts law is originally a modified version of the effective width method to normalize
speed-accuracy biases, the model fit would improve if multiple biases were mixed together and the throughputs
would be more stable than using the nominal target width. In this study, we conduct an experiment in which
participants tap 1D-bar and 2D-circular targets under three subjective biases: balancing the speed and accuracy,
emphasizing speed, and emphasizing accuracy when they perform the tasks. The results showed that applying
the effective width to Ko et al.’s refined FFitts law, which represents the touch ambiguity with a free parameter,
was the most successful in normalizing biases. Reanalyzing another dataset on ray-casting pointing also led
to the same conclusion. We thus recommend using Ko et al.’s model with effective width when researchers
compare several experimental conditions such as devices and user groups.
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1 Introduction
1.1 Background
Pointing at targets is one of the most frequent operations in PC or smartphone usage. In the HCI
field, deriving user-performance models to predict task outcomes is a core topic, and Fitts’ law is
widely utilized to predict the movement time MT in pointing [19]. In addition, Fitts’ law is used to
calculate a usability metric called throughput TP , which is used to compare the performance of
different experimental factors such as devices and user groups [47].
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Fitts’ law holds for various devices, including touchscreens [10, 61] and hand-held controllers
for virtual reality (VR) environments or wall-sized displays [6, 31]. However, when users operate
touchscreens, several issues may prevent them from accurately tapping the intended target, such
as occlusion of the target or deformation of the finger pad [27, 28]. Since the target size (or width
𝑊 ) cannot be fully utilized in such situations, Bi et al. proposed the Finger-Fitts law (FFitts law),
which modifies Fitts’ law to integrate the ambiguity of finger-touch coordinates [10].

Although several replications on FFitts law have been conducted, they are lacking in sufficient
experiments to verify the inherent potential of this model. FFitts law is modified from the effective
width method [47, 53], which adjusts the target size by the endpoint variability a posteriori. The
benefit of using the effective width𝑊𝑒 is that it normalizes the subjective biases when researchers
analyze the data exhibited by participants operating with multiple speed-accuracy priorities. For
example, Zhai [63] and Yamanaka [59] asked the participants to adhere to three speed-accuracy
biases, and we will employ similar biases in our experiment as follows:

• Neutral: Perform the task as quickly and accurately as possible.
• Accurate: Perform the task so as not to make errors as much as possible without worrying
about the duration.

• Fast: Perform the task as quickly as possible without worrying about making errors.
However, in previous studies on FFitts law, experiments were conducted with only one bias
[10, 32, 35, 36, 50, 53, 55, 61].1

1.2 Research Hypothesis and Contribution
There are two metrics to identify the benefit of using𝑊𝑒 instead of the nominal𝑊 [42, 62, 63]: (a)
when analyzing data from operations with multiple biases mixed together, the model fit is better,
and (b) TPs are more stable across different biases, i.e., the TPs under different speed-accuracy bias
conditions fall within a narrower range. Because FFitts law originally improved on the effective
width method, our research hypothesis for touch pointing is that “Combining FFitts law with𝑾𝒆

should further improve the normalization capability in terms of (a) and (b) above, rather
than using either FFitts law or𝑾𝒆 alone.”
If using only𝑊𝑒 without FFitts law can normalize the impact of bias, researchers can use the

simple model formulation to calculate TP , which would support previous studies that compared
user performance using only𝑊𝑒 . Alternatively, it might be sufficient to use only FFitts law without
𝑊𝑒 , or to use a combination of FFitts law and𝑊𝑒 . On the basis of the results of previous studies,
we can probably assume that the best choice is to use both FFitts law and𝑊𝑒 , since using𝑊𝑒 can
normalize the effects of bias and FFitts law should fit the MT data in touch operations.

However, there is no evidence to indicate which of these potential combinations is the best. It is
scientifically inappropriate for researchers to make decisions about whether to combine FFitts law
and𝑊𝑒 purely on speculation without empirical data. Until now, there has been neither evidence
for doing so nor counter-examples, e.g., researchers might have reached a conclusion that using
only FFitts law is sufficient to achieve (a) and (b) above, and combining FFitts law and𝑊𝑒 gave no
significant improvement. This lack of evidence is what motivated us to conduct the current work.

In this study, we conducted two touch-pointing tasks and reanalyzed existing datasets on pointing
in VR [8]. We will justify the application of FFitts law to pointing in VR later. Our findings led to
the same conclusion for two touch-pointing tasks and the ray-casting method, namely, that we
should combine FFitts law and𝑊𝑒 for normalizing speed-accuracy biases.

1We surveyed all articles that cited the original FFitts law paper [10] in the ACM Digital Library and Google Scholar as of
February 15th, 2024.

Proc. ACM Hum.-Comput. Interact., Vol. 8, No. MHCI, Article 285. Publication date: September 2024.



Verifying Finger-Fitts Models for Normalizing Subjective Speed-Accuracy Biases 285:3

Our contribution is thus to experimentally demonstrate that using both FFitts law and𝑊𝑒 can
better normalize the speed-accuracy biases. While researchers have traditionally used𝑊𝑒 alone
for comparative experiments with touchscreens and ray casting [5, 18, 21], this work will enable
researchers to more fairly compare the performances of different factors (e.g., devices, interaction
techniques, and user groups).

2 Related Work
2.1 Movement Time Models
Fitts’ law predicts theMT based on the target distance𝐴 and its width𝑊 with regression constants
(𝑎 and 𝑏) [19, 47]:

Baseline Fitts’ law: MT = 𝑎 + 𝑏 · ID and ID = log2

(
𝐴

𝑊
+ 1

)
, (1)

where ID is the index of difficulty. In a typical user experiment, participants are asked to “perform
the task as quickly and as accurately as possible” to balance the speed and accuracy, which we call
the Neutral bias instruction.

Target pointing has been utilized in various comparative experiments in the HCI field. Examples
include comparing the performance of devices [12, 20], user attributes [18, 45], and selection
techniques [14, 23]. In such experiments, even when researchers give participants the Neutral
instruction, bias may occur towards speed or accuracy. For example, in a device comparison
experiment where a mouse has MT = 1000 ms and the error rate ER = 7% while a trackball has
MT = 1300 ms and ER = 3%, it is difficult to determine which has the higher performance. If both
devices exhibit the same ER, we can conclude that the device with the smaller MT has a higher
performance, but this is quite a rare case.
The effective width method enables such an equivalent ER, as the𝑊𝑒 is adjusted so that ER

becomes 4% [47]. The𝑊𝑒 is calculated by the variance 𝜎2 of the endpoint (e.g., click- or tap-point
coordinate) distribution:

𝑊𝑒 =
√
2𝜋𝑒𝜎2 = 4.133𝜎. (2)

We can then compare TPs for both devices [47]:

TP = ID/MT . (3)

TP indicates the difficulty level performed per unit of time. By applying𝑊𝑒 to ID in Eq. 3, we can
fairly compare the performance of several devices having the adjusted speed-accuracy bias.2

2.2 Finger-Fitts Law Models
According to Bi et al.’s dual Gaussian distribution model, the touch-point variability 𝜎 consists of
two components [10]. One is the relative component (𝜎𝑟 ) affected by the speed-accuracy tradeoff of
the users, i.e., the faster the users conduct the task, the wider the distribution becomes. The other
is the absolute component (𝜎𝑎), which represents the precision of the finger. Assuming that the
two components are independent, the touch-point variability is calculated as follows:

𝜎2 = 𝜎2
𝑟 + 𝜎2

𝑎 . (4)

Originally, 𝜎 used for𝑊𝑒 (Eq. 2) indicated the endpoint variability affected by the speed-accuracy
tradeoff, which is represented by 𝜎𝑟 in Eq. 4. Thus, Fitts’ law for finger-pointing (Bi et al.’s FFitts

2Another extensively used definition of TP is 1/𝑏. The bias-normalization results of this formulation are included in the
supplementary materials.
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law [10]) is

Bi et al.’s FFitts law: MT = 𝑎 + 𝑏 log2

(
𝐴

4.133
√︁
𝜎2 − 𝜎2

𝑎

+ 1

)
. (5)

𝜎𝑎 is measured by a calibration task in which users repeatedly tap an extremely small target, and
the endpoint variability represents 𝜎𝑎 [10]. Alternatively, since the squares of 𝜎 and𝑊 are linearly
related (𝜎2 = constant ×𝑊 2 + 𝜎2

𝑎), 𝜎𝑎 can be obtained from the intercept of this regression [11].
To compute 𝜎 and 𝜎𝑎 , either univariate or bivariate standard deviations (SD𝑥 and SDxy , respec-

tively) of tap coordinates can be used. For SD𝑥 , only endpoints projected onto the task axis (i.e., the
direction from the start to the target) are used. For SDxy , endpoints on a 2D plane are used. Even
for 2D Fitts’ law tasks, using SD𝑥 is allowed [47, 54].
In both calibration and intercept methods, 𝜎2 is sometimes smaller than 𝜎2

𝑎 [61]. In this case,
the radicand in Eq. 5 becomes negative, and FFitts law cannot hold. Ko et al.’s modified FFitts law
resolved this issue [35]:

Ko et al.’s FFitts law: MT = 𝑎 + 𝑏 log2
(

𝐴
√
𝑊 2 − 𝑐2

+ 1
)
, (6)

where 𝑐 is a free parameter. Ko et al. utilized𝑊 instead of𝑊𝑒 because “participants respect the
spatial constraint set by the task parameters” [35]. Yamanaka and Usuba found that Ko et al.’s FFitts
law without root shows a good fit [61]:

No-root Ko et al.’s FFitts law: MT = 𝑎 + 𝑏 log2
(

𝐴

𝑊 − 𝑐
+ 1

)
. (7)

In actuality,Welford proposed almost the same formulations as Eqs. 6 and 7 [53], with the differences
being to use𝑊𝑒 instead of𝑊 and to use “+0.5” instead of “+1”. His purpose to derive these models
was to absorb the effect of hand tremor when participants operated a stylus in pointing tasks.
Hence, the concepts for FFitts law and Welford’s models are the same in terms of adjusting the
target size that cannot be fully utilized.
Experiments by Bi et al. [10], Ko et al. [36], Yamanaka et al. [61], and Welford [53] have all

reported that using𝑊 instead of𝑊𝑒 results in a better model fit, but these all used a single type
of instruction (Neutral). Considering the original derivation basis of FFitts law, which involved
subtracting a small value from𝑊𝑒 in the effective width method to absorb finger-touch ambiguity,
the inherent potential of FFitts law lies in normalizing the speed-accuracy bias. This can be verified
in experiments with multiple biases to measureMT data, where (a) the model fit is high even when
regressing MTs from all bias conditions mixed together, and (b) the TPs are stable across biases.
However, researchers have not yet undertaken such experiments.

2.3 Subjective Speed-Accuracy Biases
2.3.1 Effective Width Improves Model Fit when Mixing MT Data from Multiple Biases. Zhai et
al. compared three biases in stylus-based pointing: to tap the targets “as accurately as possible”
(Accurate), “as accurately as possible and as fast as possible” (Neutral), and “as fast as possible” (Fast)
[63]. They found that using𝑊𝑒 showed higher 𝑅2 when data from all bias conditions were regressed
together, while using𝑊 yielded a higher 𝑅2 for a single bias. These results were consistently found
in their two additional experiments using two and five biases [63] and Yamanaka et al.’s studies
[59, 62].
Fitts’ law and its variations were designed to predict MT data measured under a single fixed

condition, e.g., one group of participants using one device following one type of instruction.
Therefore, it is out of scope to fit MT data from multiple instructions’ operations mixed together.
Nevertheless, according to Zhai et al. [63], using 𝑊𝑒 for fitting resulted in a lower ID in the
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Fast condition (where larger endpoint variability increased𝑊𝑒 ) and a higher ID in the Accurate
condition (where smaller endpoint variability reduced𝑊𝑒 ). Thus, while biases affected MT , using
𝑊𝑒 appropriately adjusted the ID values, which stabilized the intercept 𝑎 and slope 𝑏 when fitting
MT for each bias. This enabled for a higher 𝑅2 when mixing MT data from multiple biases than
using𝑊 .
Zhai et al. thus claimed to use 𝑅2 in a multiple-bias MT regression to determine whether𝑊 or

𝑊𝑒 more effectively smooths out the effects of biases, and we will use this methodology. However,
models with more free parameters tend to fit better to widely scattered MT data points. Therefore,
we will employ adjusted 𝑅2 and AIC [2], as well as cross-validation, which were not used by Zhai
et al., to draw conclusions more fairly.

2.3.2 Effective Width Yields More Stable Throughput. MacKenzie and Isokoski conducted a mouse-
based experiment with three biases and found that using𝑊𝑒 made the TPs close to each other,
ranging from 5.67 to 5.73 bits/s (i.e., a difference of less than 1%) [42]. In contrast, Olafsdottir et al.
tested two additional conditions, max speed and max accuracy [44], and found that TP ranged from
approximately 6 to 10 bits/s (42% difference), suggesting that using𝑊𝑒 for TP does not normalize
the speed-accuracy bias. However, the bias we examine in this study is subjectively invoked
when participants perform pointing tasks in (e.g.) a standard device- or participant-comparison
experiment. Therefore, unnecessarily excessive bias instructions such asmax accuracy (i.e., “Always
click on the same pixel” [44]) are out-of-scope.
To evaluate the bias-normalization capability, Yamanaka et al. defined the TP difference as

100% × (TPmax − TPmin)/TPmax , where TPmax and TPmin are the maximum and minimum TPs
among the tested bias conditions [62]. If a model perfectly normalizes the biases, the TP difference
is 0%. They showed that using𝑊𝑒 instead of𝑊 decreases the TP difference, which indicates a
greater normalization capability of𝑊𝑒 .

3 Touch-Pointing Experiment
3.1 Tasks
We conducted four tasks: (1) 1D calibration task, (2) 1D Fitts task, (3) 2D calibration task, and (4) 2D
Fitts task, all under the three bias conditions. The 1D calibration task was conducted for measuring
𝜎𝑎 in FFitts law for 1D. The participants repeatedly tapped a one-pixel horizontal-bar target that
appeared in a random position. When the tapped position was within the target, a sound to indicate
success was played; otherwise, a failure sound was played. The next target then appeared regardless
of the success or failure of the trial.
In the 1D Fitts task, participants alternately tapped two horizontal-bar targets (Fig. 1a). The

current target was orange, and the non-target was gray. The first target was the top one. The
distance between the targets and their widths were 𝐴 and𝑊 , respectively. If the tap position was
outside the target, the color of the targets did not change, and participants re-aimed at the same
target. Sound feedback was given depending on the success or failure for each tap.

The 2D calibration task was conducted for measuring 𝜎𝑎 in FFitts law for 2D. Participants aimed
at the center of a 20-mm-wide crosshair target that appeared in a random position. Other than the
shape of the target, this task was the same as the 1D calibration task. In both calibration tasks, the
target was set to appear 20 mm from the inside edges of the screen, as targets located too close to
the edge are known to worsen the touch performance [3].
In the 2D Fitts task, circular targets were arranged in a circle (cf. the ISO 9241-9 task [47]).

Participants tapped the targets one after another in the order depicted in Fig. 1b. The color settings
and sounds were the same as in the 1D task.
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Fig. 1. 1D Fitts and 2D Fitts tasks.

3.2 Participants and Experimental System
Sixteen local university students participated in the experiment (age: Mean = 20.6, SD = 1.37). All
participants were right-handed and were accustomed to touch interaction. They were asked to tap
the targets with their right index finger. The experiment time was assumed to be 30 minutes, and
the participants received 10.47 USD as a reward.
We used a desktop PC (Intel Core i9-12900KF, GeForce RTX 3070 Ti, 32 GB RAM, Windows

10 Home) and an external touch display (IK-KC209, 10-point multi touch, 13.3 inches, 1920 ×
1080 pixels, 60 Hz). We set the display flat on a table and disabled Windows’ touch feedback. The
experimental system was developed in JavaScript.

3.3 Design and Procedure
In the Fitts tasks, we tested two 𝐴s (26 and 60 mm) and three𝑊 s (3, 5.5, and 8.5 mm). Fitts’ ID
ranged 2.02–4.39 bits. We chose a wider and higher ID range than several previous FFitts law
studies (1.92–3.75 bits [10, 55]) to obtain more reliable model fits with regressions, while the range
was narrower than another study (1.58–4.95 bits [61]) to shorten the experimental duration for
examining three bias conditions. The order of the target conditions was random.
We tested three Bias conditions: Neutral, Accurate, and Fast (see Section 1.1). The instruction

was always displayed at the top of the screen as a reminder.
Participants were divided into two groups: one conducted the 1D tasks first and the other did the

2D tasks first. Both groups performed the calibration tasks first and then the Fitts tasks. Regarding
the order of Bias, all participants conducted Neutral first to help them conduct the task more
accurately or faster in the second and third bias conditions (Accurate or Fast) [34, 60]. The order of
Accurate and Fast was balanced.

In both calibration tasks, participants performed tapping 32 times for each Bias. Thus, the total
number of trials was 1,536 (3Bias×32repetitions×16participants). In both Fitts tasks, first, the participants
conducted a practice block whose condition was fixed to 𝐴 = 36 and𝑊 = 4.5 mm (ID = 3.20
bits) to set a medium difficulty level. In the practice and main blocks, participants repeated each
condition 16 times. Thus, in the 1D task, they conducted eight round trips between the targets,
and in the 2D task, they finished the trial on the 17th target. The total number of trials was 4,608
(2𝐴 × 3𝑊 × 3Bias × 16repetitions × 16participants) in both Fitts tasks.

4 Results of Touch-Pointing Tasks
We removed tap positions that were 15mmaway from the target center as outliers to exclude acciden-
tal operations such as double-tapping the previous target, while we did not employ participant-level
outliers. These criteria were consistent with previous studies [11, 61]. We removed seven outliers
in the 1D calibration task (0.46%), ten in the 1D Fitts task (0.22%), eight in the 2D calibration task
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Table 1. 1D: 𝜎2 − 𝜎2𝑎 and 𝜎2 − intercept for each condition. 𝜎𝑎 is obtained from the calibration task. intercept
is obtained from the regression intercept. The red values are negative, and the target size in FFitts law is
undefined.

Neutral Accurate Fast
𝜎2
𝑎 = 1.01, intercept = 0.999 𝜎2

𝑎 = 0.814, intercept = 0.516 𝜎2
𝑎 = 2.39, intercept = 2.21

𝐴 𝑊 𝜎2 𝜎2 − 𝜎2
𝑎 𝜎2 − intercept 𝜎2 𝜎2 − 𝜎2

𝑎 𝜎2 − intercept 𝜎2 𝜎2 − 𝜎2
𝑎 𝜎2 − intercept

26 3 0.977 −0.0334 0.00205 0.518 −0.297 −0.363 1.85 −0.544 −0.0220
26 5.5 1.16 0.150 0.00333 0.519 −0.296 0.225 2.44 0.0438 0.162
26 8.5 1.78 0.774 0.211 0.727 −0.0879 0.0189 2.23 −0.162 0.785
60 3 1.19 0.178 0.0329 0.549 −0.266 0.176 2.39 −0.00523 0.190
60 5.5 1.51 0.496 0.295 0.811 −0.00361 1.65 3.87 1.47 0.507
60 8.5 1.72 0.713 0.350 0.865 0.0507 2.35 4.56 2.17 0.724

(0.52%), and 22 in the 2D Fitts task (0.48%). To compute 𝜎 and 𝜎𝑎 , we used univariate SD𝑥 for 1D
and bivariate SDxy for 2D tasks, as in previous FFitts law studies [10, 61].

4.1 1D Task
4.1.1 Movement Time, Error Rate, and 𝜎𝑎 . To check whether the participants followed each Bias
instruction, we systematically ran repeated-measures ANOVA, as ANOVA is robust regardless of
data distribution (e.g., violating the normality assumption) [17, 43]. For the Fitts task, dependent
variables were MT (time from successfully tapping previous target to tapping the screen to aim
for the current target including error trials) and ER (trials with one or more errors divided by the
number of repetitions), and independent variables were𝐴,𝑊 , and Bias. For the calibration task, the
dependent variable was 𝜎2

𝑎 and the independent variable was Bias. We used the Bonferroni 𝑝-value
correction. If Mauchly’s sphericity test was rejected, we used the Greenhouse–Geisser correction.
Regarding MT , we found the main effect for Bias (𝐹1.43,21.4 = 54.4, 𝑝 < 0.001, [2𝑝 = 0.784).

On average, we obtained 562 ms for Neutral, 777 ms for Accurate, and 397 ms for Fast, and all
pairwise comparisons were significant (𝑝 < 0.001). Regarding ER, we found the main effect for Bias
(𝐹2,30 = 39.4, 𝑝 < 0.001, [2𝑝 = 0.724): 7.90% for Neutral, 2.80% for Accurate, and 15.9% for Fast, and
all pairwise comparisons were significant (𝑝 < 0.01). These findings indicate that the participants
accurately followed each Bias.

Regarding 𝜎2
𝑎 , we found the main effect for Bias (𝐹1.22,18.2 = 17.6, 𝑝 < 0.001, [2𝑝 = 0.539). Table 1

shows 𝜎2
𝑎 for each condition, and there were significant differences between the values of Accurate

and Fast (𝑝 < 0.01) and Neutral and Fast (𝑝 < 0.01). According to the dual Gaussian distribution
model, 𝜎𝑎 is not affected by the speed-accuracy tradeoff [10], but Yamanaka and Usuba reported
that 𝜎𝑎 was significantly changed depending on the computation method (either a calibration task
or a regression intercept) and the instruction in the calibration task (Fast or Neutral) [61]. Our
results empirically support Yamanaka and Usuba’s report.

4.1.2 Model Performance. We checked the radicand in the target size of Bi et al.’s FFitts law
(4.133

√︁
𝜎2 − 𝜎2

𝑎). When 𝜎𝑎 was obtained from the calibration task, the radicand became negative
in 9 / 18 conditions. Using 𝜎𝑎 from the intercept of 𝜎2 = constant ×𝑊 2 + 𝜎2

𝑎 made the radicand
become negative in 2 / 18 conditions (Table 1). For these results, we could no longer use the original
FFitts law (Eq. 5), aligning with a previous replication study [61]. Thus, in the 1D task, we verified
three models (Fitts’ law, Ko et al.’s FFitts law, and no-root Ko et al.’s FFitts law) for each of𝑊 and
𝑊𝑒 ; six candidate formulations in total.

To balance the model fit and complexity, we used adjusted 𝑅2 and AIC [2] as evaluation metrics
for all fitting points, i.e., MTs under three biases were regressed together. The model fit is better
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Table 2. 1D: (a) Adjusted 𝑅2 and AIC for all fitting points. (b) 𝑅2, MAE, and RMSE for LOOCV.

Model ID
(a) All fitting points (b) LOOCV
Adj. 𝑅2 AIC 𝑅2 MAE RMSE

#1 Fitts’ law with𝑊 log2
(
𝐴
𝑊

+ 1
)

0.133 238 0.0222 153 182
#2 Fitts’ law with𝑊𝑒 log2

(
𝐴
𝑊𝑒

+ 1
)

0.619 223 0.563 101 117

#3 Ko et al.’s FFitts law with𝑊 log2
(

𝐴√
𝑊 2−𝑐2

+ 1
)

0.0851 239 0.00507 160 190

#4 Ko et al.’s FFitts law with𝑊𝑒 log2

(
𝐴√

𝑊 2
𝑒 −𝑐2

+ 1
)

0.890 201 0.875 56.8 62.5

#5 No-root Ko et al.’s FFitts law with𝑊 log2
(

𝐴
𝑊 −𝑐 + 1

)
0.0853 239 0.00220 162 192

#6 No-root Ko et al.’s FFitts law with𝑊𝑒 log2
(

𝐴
𝑊𝑒−𝑐 + 1

)
0.931 193 0.897 47.5 56.7

for higher adjusted 𝑅2 and lower AIC. In addition, to evaluate the prediction accuracy for untested
task conditions, we compared 𝑅2, MAE (mean absolute error), and RMSE (root mean squared error)
for the leave-one (𝐴 ×𝑊 × Bias)-out cross-validation (LOOCV).
Table 2 summarizes the model fits for the six candidate formulations. Model #6 (no-root Ko et

al.’s FFitts law with𝑊𝑒 ) showed the best scores for all fitting points and LOOCV. Comparing the
𝑊 and𝑊𝑒 versions for each model, using𝑊𝑒 instead of𝑊 improved scores, as it could normalize
biases. This was also supported by the TPs shown in Fig. 2, where models using𝑊𝑒 yielded more
stable TPs and thus their TP differences were smaller than when using𝑊 .

When calculating the fit and TP of Ko et al.’s formulations (Models #3–#6), the ID is determined
through a nonlinear regression using the averageMT from all participants. Consequently, individual
participants do not have their own TP , which is why there are no error bars in Fig. 2. To align with
this method, Fitts’ law (Models #1–#2) also calculates TP using the average MT of all participants.
There are multiple timings at which TP is computed (e.g., for each participant or for a group of
participants [44]), and our approach is the one adopted in a previous study [62].1D
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Fig. 2. 1D: (a) TP for each Bias. (b) TP difference.

Figure 3 shows the model fit for each Bias. In all models, using𝑊 showed better fits, particularly
for Ko et al.’s FFitts law (Models #3 and #5). Thus, when researchers want to predict MT under a
single instruction (typically Neutral), using𝑊 is better even if the participants’ biases are shifted
towards speed or accuracy. These results are consistent with those of previous studies [61–63].
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Fig. 3. 1D: Model fitting for each Bias.

4.2 2D Task
4.2.1 Movement Time, Error Rate, and 𝜎𝑎 . We again ran repeated-measures ANOVAs. Regarding
MT , we found the main effects for Bias (𝐹1.33,19.9 = 54.3, 𝑝 < 0.001, [2𝑝 = 0.784): 621 ms for Neutral,
860 ms for Accurate, and 443 ms for Fast, and all pairwise comparisons were significant (𝑝 < 0.001).
Regarding ER, we found the main effects for Bias (𝐹1.44,21.6 = 22.7, 𝑝 < 0.001, [2𝑝 = 0.602): 13.1%
for Neutral, 7.64% for Accurate, and 21.4% for Fast, and all pairwise comparisons were significant
(𝑝 < 0.01). Regarding 𝜎2

𝑎 , we found the main effect for Bias (𝐹1.38,20.6 = 7.50, 𝑝 < 0.01, [2𝑝 = 0.333; see
Table 2 for each value), and there were significant differences between Accurate and Fast (𝑝 < 0.05).
Consistently with the 1D task, the participants appropriately followed each Bias instruction.
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Table 3. 2D: 𝜎2 − 𝜎2𝑎 and 𝜎2 − intercept for each condition. 𝜎𝑎 is obtained from the calibration task. intercept
is obtained from the regression intercept. The red values are negative, and the target size in FFitts law is
undefined.

Neutral Accurate Fast
𝜎2
𝑎 = 1.78, intercept = 2.03 𝜎2

𝑎 = 1.54, intercept = 1.60 𝜎2
𝑎 = 2.16, intercept = 3.17

𝐴 𝑊 𝜎2 𝜎2 − 𝜎2
𝑎 𝜎2 − intercept 𝜎2 𝜎2 − 𝜎2

𝑎 𝜎2 − intercept 𝜎2 𝜎2 − 𝜎2
𝑎 𝜎2 − intercept

26 3 2.18 0.397 0.146 1.47 −0.0706 −0.122 2.85 0.684 −0.324
26 5.5 2.23 0.445 0.194 1.81 0.264 0.213 3.71 1.55 0.542
26 8.5 2.91 1.13 0.876 2.45 0.906 0.855 6.45 4.29 3.28
60 3 2.09 0.310 0.0591 1.80 0.253 0.202 4.10 1.93 0.927
60 5.5 3.00 1.22 0.969 2.03 0.481 0.430 5.66 3.50 2.49
60 8.5 3.54 1.75 1.50 1.96 0.416 0.365 6.29 4.12 3.12

Table 4. 2D: (a) Adjusted 𝑅2 and AIC for all fitting points. (b) 𝑅2, MAE, and RMSE for LOOCV.

Model ID
(a) All fitting points (b) LOOCV
Adj. 𝑅2 AIC 𝑅2 MAE RMSE

#1 Fitts’ law with𝑊 log2
(
𝐴
𝑊

+ 1
)

0.192 242 0.0756 176 206
#2 Fitts’ law with𝑊𝑒 log2

(
𝐴
𝑊𝑒

+ 1
)

0.287 240 0.197 153 189

#3 Ko et al.’s FFitts law with𝑊 log2
(

𝐴√
𝑊 2−𝑐2

+ 1
)

0.214 243 0.0694 178 212

#4 Ko et al.’s FFitts law with𝑊𝑒 log2

(
𝐴√

𝑊 2
𝑒 −𝑐2

+ 1
)

0.718 224 0.688 97 117

#5 No-root Ko et al.’s FFitts law with𝑊 log2
(

𝐴
𝑊 −𝑐 + 1

)
0.217 243 0.0719 177 212

#6 No-root Ko et al.’s FFitts law with𝑊𝑒 log2
(

𝐴
𝑊𝑒−𝑐 + 1

)
0.856 212 0.820 69.5 89.7

4.2.2 Model Performance. When 𝜎𝑎 was obtained from the calibration task, the radicand in Bi et
al.’s FFitts law became negative in 1 / 18 conditions (Table 3). Using 𝜎𝑎 from the intercept method
made the radicand negative in 2 / 18 cases. This prevented us from using FFitts law with 𝜎𝑎 , so we
examined the same six models as in the 1D task.

Table 4 summarizes the model fits. Model #6 (no-root Ko et al.’s FFitts law with𝑊𝑒 ) again showed
the best scores for all fitting points and LOOCV, but the adjusted 𝑅2 = 0.856 was somewhat lower
than in the 1D task (0.931). The other results were consistent with the 1D task: using𝑊𝑒 instead of
𝑊 improved the model-fit scores and the TP difference (Fig. 4), and using𝑊 showed a higher 𝑅2

for each Bias (Fig. 5; using no-root Ko et al.’s FFitts law (Model #5) is the best).

5 Reanalysis of Batmaz et al.’s Datasets on Pointing Tasks in VR
To test our hypothesis that combining FFitts law with𝑊𝑒 can normalize speed-accuracy biases in
broader conditions, we reanalyzed Batmaz et al.’s datasets [8]. In their experiment, spherical targets
in a VR environment were successively selected with three bias conditions. In VR pointing tasks,
fine control of selection position is challenging due to issues with a user’s hand tremor [4, 40] and
the input device’s accuracy [33, 37, 38]. Considering that Ko et al.’s formulation (FFitts law with a
free parameter) with𝑊𝑒 was originally proposed by Welford to absorb the impact of hand tremor in
stylus-based pointing [53], and was later applied to mouse- [13] and finger-based pointing [35, 61],
we expect this model to be applicable to VR pointing, where hand/controller tremor is more likely
significant.
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Fig. 4. 2D: (a) TP for each Bias. (b) TP difference.

5.1 Overview of Task, Procedure, and Performance Results
Eighteen participants wore an HTCVIVE Pro head-mounted display and selected targets by pressing
a button on the VIVE hand-held controller. The experiment involved three types of bias (Speed,
None, and Precision), two selection methods (ray casting and virtual hand), three 𝐴s (12.5, 25.0, and
37.5 cm), and three𝑊 s (sphere diameters; 1.5, 2.5, and 3.5 cm). Click-coordinate variabilities were
measured as the univariate SD𝑥 along the task axis.
In ray casting, the controller emits a ray that selects a target it crosses. For virtual hand, a

dot fixed near the tip of the controller acts as the cursor, which requires larger arm movements
compared to ray casting.

The speed-accuracy bias was adjusted by changing the pitch of the auditory feedback. Its design
was inspired by a previous study [6] in which the pitch of the sound played for error clicking
significantly affected the participants’ subsequent speed-accuracy bias. On the basis of this result,
the three feedback types for the current datasets are as follows.

• Speed-based feedback (Speed): During a trial, a sound is continuously played, and its pitch
gradually increases. Thus, participants would naturally tend to operate faster to avoid hearing
high (irritating) pitches.

• No auditory feedback (None).
• Precision-based feedback (Precision): A sound is played when clicking. The farther the click
coordinate is from the target center, the higher the pitch. Participants would tend to operate
more accurately to avoid high pitches.

Note that the participants are asked to perform the task as fast and accurately as possible. Hence,
the auditory feedback was provided with the expectation that participants would implicitly change
their speed-accuracy bias.
For ray casting, the results showed that the MTs for the Speed, None, and Precision conditions

were 710, 1017, and 1201 ms, respectively, and the ERs were 10.9, 10.1, and 2.61%. Similarly, for
virtual hand, the MTs were 699, 992, and 1131 ms, and ERs were 6.80, 6.56, and 1.17%. Hence,
the feedback for the None, Speed, and Precision conditions had the intended effect to change the
speed-accuracy bias. For more detailed experimental designs and sound pitch frequencies, please
refer to the original paper [8].
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Fig. 5. 2D: Model fitting for each Bias.

5.2 Model Performance
Because the resultant effects of the auditory feedback on MT corresponded to Fast, Neutral, and
Accurate in our experiment, we hereafter use these three notations for consistency of terminology.
Batmaz et al.’s experiment does not include a calibration task, and thus we directly analyze model
fits of the six formulations and the stability of TP .

5.2.1 Ray Casting. Table 5 summarizes the model fits. Model #6 showed the best scores for all
fitting points and LOOCV. Using𝑊𝑒 instead of𝑊 improved scores for all three models. Figure 6
shows that Model #6 again yielded the most stable TPs across the three bias conditions.
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Table 5. Batmaz et al., ray casting: (a) adjusted 𝑅2 and AIC for all fitting points and (b) 𝑅2, MAE, and RMSE
for LOOCV.

Model ID
(a) All fitting points (b) LOOCV
Adj. 𝑅2 AIC 𝑅2 MAE RMSE

#1 Fitts’ law with𝑊 log2
(
𝐴
𝑊

+ 1
)

0.244 369 0.164 197 233
#2 Fitts’ law with𝑊𝑒 log2

(
𝐴
𝑊𝑒

+ 1
)

0.501 358 0.429 153 183

#3 Ko et al.’s FFitts law with𝑊 log2
(

𝐴√
𝑊 2−𝑐2

+ 1
)

0.228 370 0.150 198 226

#4 Ko et al.’s FFitts law with𝑊𝑒 log2

(
𝐴√

𝑊 2
𝑒 −𝑐2

+ 1
)

0.700 346 0.624 132 151

#5 No-root Ko et al.’s FFitts law with𝑊 log2
(

𝐴
𝑊 −𝑐 + 1

)
0.228 370 0.127 201 231

#6 No-root Ko et al.’s FFitts law with𝑊𝑒 log2
(

𝐴
𝑊𝑒−𝑐 + 1

)
0.713 343 0.681 120 137

Figure 7 shows the model fitting for each Bias. In all models, using𝑊 showed better fits than
using𝑊𝑒 for each Bias. Ko et al.’s FFitts law (Models #3 and #5) showed almost equally the best 𝑅2

values. These results are consistent with our results in the 1D and 2D tasks.
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Fig. 6. Batmaz et al., ray casting: (a) TP for each Bias and (b) TP difference
.

5.2.2 Virtual Hand. Table 6 indicates consistent results with ray casting: Model #6 showed the
best scores for all fitting points and LOOCV, and using𝑊𝑒 showed better scores. However, Fig. 8
shows that Model #2 (Fitts’ law with𝑊𝑒 ) yielded the smallest TP difference of 28.47%. This is a
unique result among the four datasets we examined.
Figure 9 indicates that using𝑊 showed better fits than𝑊𝑒 for each Bias. The baseline Fitts’

law (Model #1) and two models of Ko et al.’s FFitts law (Models #3 and #5) showed similarly high
𝑅2 values. The 𝑅2 values remained high (0.918 < 𝑅2 < 0.993) compared to the ray-casting data
(0.662 < 𝑅2 < 0.960 in Fig. 7).

6 Discussion
6.1 Model Performance in Touch-Pointing Experiment
We showed that using 𝑊𝑒 improved the model fit for all fitting points and decreased the TP
difference, while using 𝑊 yielded a higher 𝑅2 for each Bias. These effects have already been
confirmed in pointing tasks with pen tablets [63] and mice [62], and we showed that these also
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Fig. 7. Batmaz et al., ray casting: model fitting for each Bias.

apply to finger-touch pointing. Thus, the advantages and disadvantages of using𝑊𝑒 shown in our
tasks are consistent with those in previous studies.
In both 1D and 2D tasks, we could not use FFitts laws with 𝜎𝑎 in some conditions because of

negative radicands (𝜎2 − 𝜎2
𝑎 < 0; i.e., 𝜎 < 𝜎𝑎). This was more evident in Accurate and Fast than in

Neutral. In the 1D task, 𝜎2
𝑎 was 1.01 in Neutral and 0.814 in Accurate (Table 1); i.e., a decrease of

19.4% from Neutral to Accurate. On the other hand, 𝜎 decreased by 51.9% on average across the six
target conditions, which indicates that the degree to which 𝜎 was reduced is more substantial than
that for 𝜎𝑎 . This could presumably be why we obtained the negative radicands more frequently
under the Accurate condition than Neutral.

Bi et al. assumed that the speed-accuracy bias affects only the relative term𝜎𝑟 in Eq. 4 (𝜎2 = 𝜎2
𝑟 +𝜎2

𝑎)
[10]. However, the results of our two tasks contradicted this assumption, and supported Yamanaka
and Usuba’s report on the significant effect of Bias on 𝜎𝑎 [61]. We thus agree with their suggestion
that 𝜎𝑎 should not be used.
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Table 6. Batmaz et al., virtual hand: (a) adjusted 𝑅2 and AIC for all fitting points and (b) 𝑅2, MAE, and RMSE
for LOOCV.

Model ID
(a) All fitting points (b) LOOCV
Adj. 𝑅2 AIC 𝑅2 MAE RMSE

#1 Fitts’ law with𝑊 log2
(
𝐴
𝑊

+ 1
)

0.398 362 0.328 175 198
#2 Fitts’ law with𝑊𝑒 log2

(
𝐴
𝑊𝑒

+ 1
)

0.687 344 0.645 123 143

#3 Ko et al.’s FFitts law with𝑊 log2
(

𝐴√
𝑊 2−𝑐2

+ 1
)

0.372 364 0.307 178 202

#4 Ko et al.’s FFitts law with𝑊𝑒 log2

(
𝐴√

𝑊 2
𝑒 −𝑐2

+ 1
)

0.755 341 0.702 115 132

#5 No-root Ko et al.’s FFitts law with𝑊 log2
(

𝐴
𝑊 −𝑐 + 1

)
0.372 364 0.304 178 202

#6 No-root Ko et al.’s FFitts law with𝑊𝑒 log2
(

𝐴
𝑊𝑒−𝑐 + 1

)
0.762 340 0.709 112 130
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Fig. 8. Batmaz et al., virtual hand: (a) TP for each Bias and (b) TP difference
.

Of course, there is a chance that researchers might obtain no negative radicands. For example,
in our 2D task, if we had not tested the condition of 𝐴 = 26 and𝑊 = 3 mm, we could have used
FFitts law due to all radicands being positive (Table 3). However, 𝜎 and 𝜎𝑎 are random variables
that differ depending on the target conditions and input devices. Therefore, to analyze Fitts-task
data systematically, we recommend applying Ko et al.’s method (using 𝑐 instead of 𝜎𝑎). Moreover,
a calibration task takes extra time in addition to that required for a Fitts task, so as a practical
implication for future researchers, we recommend not conducting it.

In Yamanaka and Usuba’s report, the best model to predictMT depends on datasets. However, in
our study, the no-root Ko et al.’s FFitts law with𝑊𝑒 (Model #6) always showed the best scores in all
data points and LOOCV in both the 1D and 2D tasks. Thus, if researchers conduct touch-pointing
studies to compare several experimental factors, we recommend using Model #6 for fair comparison.
In conclusion, for touch-pointing tasks, our hypothesis is supported: combining the effective width
method with FFitts law is beneficial to normalize subjective biases.

6.2 Reasons behind Poor Fits of Baseline Models in the 2D Task
The results of our 2D task indicate that even under the common Neutral condition, the fit of Fitts’
law with𝑊 (Model #1) and that with𝑊𝑒 (#2) was low: 𝑅2 values were 0.726 and 0.195, respectively
(Fig. 5). In comparison, previous studies using 2D circular targets with Neutral instruction have
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Accurate: y = 252x + 266; R² = 0.988

Neutral: y = 178x + 382; R² = 0.953

Fast: y = 203x + 1.88; R² = 0.973

Accurate: y = 298x - 200; R² = 0.918

Neutral: y = 194x + 201; R² = 0.939

Fast: y = 225x - 166; R² = 0.970

Accurate: y = 252x + 266; R² = 0.988

Neutral: y = 178x + 382; R² = 0.953

Fast: y = 187x + 15.6; R² = 0.980

Accurate: y = 252x + 266; R² = 0.988

Neutral: y = 178x + 382; R² = 0.953

Fast: y = 187x + 32.4; R² = 0.981

Accurate: y = 287x - 291; R² = 0.951

Neutral: y = 194x + 187; R² = 0.943

Fast: y = 204x - 158; R² = 0.990

Accurate: y = 292x - 241; R² = 0.950

Neutral: y = 194x + 203; R² = 0.944

Fast: y = 202x – 120.3; R² = 0.993

#1 Fitts' law with W 

#3 Ko et al.'s FFitts law with W

#2 Fitts' law with W_e

#4 Ko et al.'s FFitts law with W_e

#5 No-root Ko et al.'s FFitts law with W #6 No-root Ko et al.'s FFitts law with W_e

Fig. 9. Batmaz et al., virtual hand: model fitting for each Bias.

shown better fits. For example, in the experiment by Yamanaka and Usuba, Model #1 had an 𝑅2 of
0.9904, and #2 had an 𝑅2 of 0.7317 [61]. Bi et al. also showed 𝑅2 values of 0.85 and 0.79, respectively
[10]. We discuss possible reasons for the poor fits in our results below.
(1) Some target conditions could be completed with ballistic movements. According to

Hoffmann et al., when Fitts’ original ID = log2 (2𝐴/𝑊 ) is less than 3–4 bits, the pointing task can
be completed without visual feedback [26]. Such ballistic movements are done in less than the
human corrective reaction time (∼260 ms), and do not fit well with Fitts’ law. In our experiment,
three conditions had IDs below 4 bits: (𝐴,𝑊 , Fitts’ ID) = (26, 5.5, 3.24), (26, 8.5, 2.61), (60, 8.5, 3.82).
However, looking at Model #1 in Fig. 5, because MTs were longer than 400 ms under the Neutral
condition, the movements cannot be considered completely ballistic, and it does not seem to be a
definitive cause of poor model fit.
(2) The numbers of participants and trials were not sufficient. Because the original Fitts’

law (Model #1) is to predict the averageMT by numerous participants, the model fit should improve
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Fig. 10. The results from our 2D task to focus on the poor fit of Models #1 and #2 under the Neutral condition.
Black arrows indicate how FFitts law moves the data points by adjusting the IDs.

as the numbers of participants and trials increase. Also, Fitts’ law with𝑊𝑒 (Model #2) is derived
on the basis that the more tapping actions are performed, the closer the endpoints will be to a
normal distribution. Previous studies have experimentally shown that increasing the numbers
of participants and trials improve 𝑅2 of Models #1 and #2 [58, 59]. However, the aforementioned
experiments by Bi et al. and Yamanaka and Usuba recruited 12 participants performing 16 repetitions,
while we employed 16 participants and 16 repetitions. Therefore, this also does not seem to be a
definitive cause for the poor fit.

(3) Some task conditions were too difficult. Experiments that fit Fitts’ law typically have an
ER of 4–5% [47]. In our 2D experiment, even under the Neutral condition, the average ER was 13.1%.
Thus,MTs with smooth operations might not have been measured, which potentially disrupted the
relationship modeled by Fitts’ law. Particularly for the target with𝑊 = 3 mm, the ER exceeded 30%
(see Fig. 10), and the relatively long time compared to other𝑊 s might have worsened the model fit.
However, even in Bi et al.’s experiment [10], where𝑊 s of 2.4, 4.8, and 7.2 mm were used with an
average ER of 33%, the fit was high despite more difficult conditions than in our experiment.

(4) Impact of the fat finger problem was greater for 2D targets than 1D. The phenomenon
that a finger occludes a target is called the fat finger problem [29, 52]. In 1D tasks, because the
targets were horizontally long, it was relatively easy to adjust the finger position on the target
even if it was small. However, for small 2D targets, the finger completely occludes the target just
tapping, which increases the necessity of careful finger positioning. According to Fig. 10a and b,
the two conditions of𝑊 = 3 mm exhibited ERs over 33% and had the highest MTs among the six
target conditions. This indicates that much higher IDs should be used for these data points, but
Fitts’ law with𝑊 (Model #1) yielded ID values close to those of other target conditions, while
Model #5 resolved this issue.

Regarding Fitts’ lawwith𝑊𝑒 (Model #2), for small 2D targets, careful operation did not necessarily
result in tapping near the target. According to Fig. 10b and c, for𝑊 = 3 and 5.5 mm, the MTs were
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734 and 563 ms, respectively (a difference of 23.3%), but the𝑊𝑒 values are 6.099 and 6.165 mm (a
difference of only 1.08%). These results led to a large difference on the y-axis values of (b) and (c) in
Fig. 10 right panel, while there is almost no difference on the x-axis values, which could have result
in the poor fit.
(5) A tablet and discrete pointing task were used. The experiments by Bi et al. [10] and

Yamanaka and Usuba [61] were conducted on smartphones, and a set of the start button and target
was presented for each trial, while our design involved tapping targets successively. The former is
called a discrete Fitts task while the latter is known as a serial task [24, 56]. In the case of discrete
tasks, it might be possible to sufficiently locate the target position before tapping the start button
in each trial, and perhaps tilt the smartphone held in the non-dominant hand to peek at the target
if necessary. In contrast, we used a tablet placed on a table, and thus it would be challenging to
peek at each target, and doing so would increase the MT . This might disrupt the lawful regularity
in 2D tasks.

6.3 Model Performance in Batmaz et al.’s Experiment
Batmaz et al.’s instructions were to perform the task as fast and accurately as possible, but auditory
feedback led the participants to change their speed-accuracy bias. Our reanalysis showed that,
at least for ray casting, using the effective width method and FFitts law together appropriately
normalized the bias.

The model fits for all fitting points were worse compared to our touch-pointing experiment; the
best adjusted 𝑅2 for ray casting was 0.713 and that for virtual hand was 0.762. Previous studies have
identified several factors influencing why operations in VR encounter difficulties and affecting
Fitts’ law fits, such as stereoscopic vision [7, 51] and the need to keep one’s arm raised [25, 30].

Since the type of auditory feedback significantly influenced MT , using Fitts’ law with𝑊 (Model
#1) made the three regression lines diverge vertically (Figs. 7a and 9a). Therefore, when predicting
MT data while mixing the three bias conditions, using𝑊𝑒 instead of𝑊 provided a better model fit
for both selection methods (Tables 5 and 6). In particular, Model #6 showed the best fit, and also
had the highest capability to normalize TP in ray casting.
The exception was the stability of TP in virtual hand, where Fitts’ law with𝑊𝑒 was the best

(Model #2). One reason for this could be the lesser presence of tremor compared to ray casting.
Even minor hand movements significantly shift the ray’s endpoint in ray casting, whereas finer
positioning was possible in virtual hand. This could reduce the contribution of the free parameter 𝑐
for absorbing hand tremor. Thus, using the effective width method alone was sufficient to normalize
TP , which made Model #2 the best. However, Table 6 showed that Model #6 was superior in model
fit for virtual hand, so from this perspective, we recommend using Model #6. Thus, for virtual hand,
it is logical to withhold a conclusion about the best model for normalizing the bias. In conclusion,
our hypothesis on the benefit of combining the effective width method with FFitts law is supported
only for ray casting.

6.4 Implications
6.4.1 Recommended Model for Comparative Study. To calculate TPs in touch-pointing tasks, re-
searchers have used Fitts’ law with𝑊 (Model #1) for comparing the effect of the participants’ ages
[57], or Fitts’ law with𝑊𝑒 (Model #2) for comparing crowdsourced vs. laboratory participants [18].
Similarly, in VR pointing tasks with ray casting, Model #2 has been used. For example, a ray of
infinite length yielded a significantly better TP than a fixed-length ray [5]. Gabel et al. also used
Model #2 to compute TPs for comparing the performance of straight, curved, and rotated rays [21].
However, according to the results of our experiment and reanalysis, if the participants in the

above four studies [5, 18, 21, 57] had an implicit bias towards speed or accuracy, it could prevent
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fair comparison. In particular, our TP comparison (e.g., Fig. 6a) showed that there is a tendency for
TP to be calculated as higher when the bias is towards Fast. To avoid this effect, we recommend
that researchers use Model #6 when comparing performance in touch operations and ray casting in
their future studies.

6.4.2 Potential Applicability to Broader Experimental Situations. We limited the experimental data
in this study to basic touch pointing on a PC display and pointing in VR, but there are other
operational scenarios that involve decreased touch precision. Previous studies have reported that
pointing performance deteriorates (e.g., MT and ER increase) with intensified vibration, such
as operating touchscreens in car navigation systems [1, 48] or in airplane cockpits [15, 16, 50].
Additionally, the accuracy of touch operations on smartphones decreases with faster walking speed
[9, 39, 46].
In these papers, MT and ER were compared independently, but using a single metric of TP can

simplify comparisons. For example, in Tao et al.’s study on comparing touchscreen performance in
cars at different vibration levels, MT and ER were reported separately [49]. Figure 2 of their paper
shows that, although the participants were instructed to maintain a 1% ER across three vibration
levels (Static, Slight, and Moderate), the smallest MT was observed for the Slight condition. This is
contrary to other vibration-related previous studies where the Static condition exhibits the smallest
MT [1, 16, 46]. Therefore, there could be an implicit bias towards speed under the Slight condition.

For fairer comparison between task conditions, computing TPs after normalizing such biases can
facilitate discussions about performance changing. Based on our experimental results, for future
researchers who would like to conduct comparative experiments, we recommend using a model
that combines FFitts law and the effective width method.

6.5 Limitations and Future Work
In our 2D task, while the no-root Ko et al.’s FFitts law with𝑊𝑒 (Model #6) showed the best model-fit
scores, the adjusted 𝑅2 = 0.856 was somewhat lower than in 1D. However, it still remained high
compared to previous studies, e.g., 𝑅2 = 0.825 for three biases and 𝑅2 = 0.783 for five biases using
stylus [63]. Note that a direct comparison is difficult due to differences in tasks, and also that
deciding a model’s goodness of fit based solely on 𝑅2 is inadequate [22]. Thus, we focused on
comparatively discussing the relative highs and lows across different models and datasets.

Using the circular shape for 2D targets is another limitation. In mouse-based rectangular target
pointing with three biases, a model using𝑊𝑒 and the effective height 𝐻𝑒 showed better fit scores
than using only𝑊𝑒 [62]. Thus, our next step is to verify whether combining FFitts law with𝑊𝑒 and
𝐻𝑒 can normalize the biases for rectangular targets.

We expected that a single model would consistently show the best performance in terms of fit
scores and TP-stabilizing effects in all of the 1D and 2D touch-pointing tasks, as well as the two VR
pointing tasks. However, although Model #6 often normalized the biases the most, Fitts’ law with
𝑊𝑒 (Model #2) showed the best result for TP stability in the virtual hand condition. Investigating
a model that can robustly achieve the highest bias-normalization capability under much broader
experimental conditions will be included in our future work.

7 Conclusion
In this study, we investigated FFitts law under subjective biases for pointing tasks with a touchscreen
and a VR environment. Using𝑊𝑒 instead of𝑊 improved the model fit when the data combined
three bias conditions and narrowed the TP range. In comparison, analyzing theMT data for a single
bias showed that using𝑊 enabled a better fit. These results are consistent with mouse pointing.
In addition, for touch operations, we found that 𝜎2 − 𝜎2

𝑎 becomes negative in some conditions,
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and the no-root Ko et al.’s FFitts law with𝑊𝑒 (Model #6) showed the best scores in the 1D and 2D
tasks, as well as the ray-casting operation in VR. Thus, if researchers conduct experiments with the
subjective biases in finger pointing and ray casting, we recommend using Model #6, while using
either of the two formulations of Ko et al.’s FFitts law with𝑊 (Models #3 and #5) was often the
best for predicting MT under a single bias.

In the HCI field, researchers proposing novel touch-input devices or target-acquisition techniques
have compared their methods with a certain baseline, such as common touchscreens or unassisted
tap operations. In such cases, simply comparingMTs might lead participants to implicitly prioritize
speed or accuracy, and thus researchers have been suggested to use TP [41, 47]. Without our current
paper, they would likely follow the standardized methodology, i.e., using the ISO 9241-9 task (where
circular targets are arranged in a circle) and calculating TP by Fitts’ law with𝑊𝑒 (Model #2).

However, as our experimental results showed, Model #2 does not sufficiently normalize the effects
of bias, and thus participants may have a bias towards speed or accuracy, which may not allow for
a fair comparison of input devices or interaction techniques. Additionally, simply combining three
separate findings from previous research to conclude that (1) it is better to use𝑊𝑒 to calculate TP
for device comparison, (2) it is better to use the Finger-Fitts law for touch operations, and (3) Ko et
al.’s modified Finger-Fitts model is better than the original version, might lead some researchers to
coincidentally use the best model (#6) by chance. However, this is scientifically inappropriate as it
is not based on evidence. This paper provides crucial evidence on which models should be used
in future research methodologies and offers insights on users’ touch-operation behaviors to the
audience within the MobileHCI community.
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